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High Level Alternatives

Approach 1. Blame the Agile development process, fire the folks who 
are controlling it and revert to previous development processes

Approach 2. Assess why the current approach is chaotic, determine 
ways (processes, technology, personnel) to stabilize the development, 
and then continue
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Agile Terms

Scrum

• Scrum lead, product owner, developers with appropriate skills

Feature Batch

• New features fixed until batch completion (prioritized)

• Test procedures are developed concurrently

Timebox

• Team agrees to implement the batch in this timebox (weeks)

Alignment

• Vertical change all components for new features

• Horizontal component cohesion and consistent
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Developmental Rhythms

Planning Rhythms

• Lifecycle (Program managers, System Engineers and Architects)

– capabilities / features/ components/ tests for each milestone

– relationships between them

• Milestone (System Engineers and Architects)

– Capabilities, features, test scenarios, components built and integrated for 
each timebox within the milestone

– describes the mappings between the above for each timebox

• Timebox (Architects, Development Managers)

– allocates efforts to teams to accomplish the plan

– Updates the plan to recover from : slippages, defects, unplanned 
workarounds

Implementation Rhythm (Architects and Implementers)

• Focuses on detailed work efforts by teams within timeboxes



5

Resolving Chaos Arising from

Agile Software Development

William Wood, 10/17/2011

© 2011 Carnegie Mellon University

Lifecycle Plan - System Engineer

Capabilities

System Engineering

Matrix shows dependencies between 

capabilities

Complete

Early

Features
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Lifecycle Plan - System Engineer

Capabilities

Milestones

System Engineering

Capabilities

Test Scenarios
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Initial System Engineering Plan



7

Resolving Chaos Arising from

Agile Software Development

William Wood, 10/17/2011

© 2011 Carnegie Mellon University

Lifecycle Planning - Software Architect

Software Engineering

Software Components

Mapping Capabilities to Software

Capabilities

Software Layers
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System

Life-Cycle Plan- SE and SA

Capabilities

Milestones 1

1

1

2

1
4

1

3

System Engineering

Software Architects

Software Architects

Software Components

1 2 3 4

Workaround
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Life-Cycle Plan - SA - Alternatives

Capabilities
System Engineering

Stakeholder Concerns

Architecture Drivers
Resources 

Available
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Architecture Driven Design (ADD)

Architecture 

Drivers
Alternative 

Architectural 

Patterns

1
1

1
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1
4

1
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Capabilities

Tests

Components
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Milestone Plan- Alternatives

1
1

1

1
2

2

Timeboxes

Optimal 

Path

Feasible Paths are any 

combination of blue arrows

Note: patterns for timebox  

n+1 must be developed in 

timebox n 
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Life-Cycle Plan - SA - Patterns

Architectural 

Patterns

1
1

1
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1
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1
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Tests

Components
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Milestone Plan - Batches Selected

1
1

1

1
2

2

Timeboxes
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Timebox Activities
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Timebox Re-directions - 1
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Convincing the PM to Stabilize

Show him examples of success for stabilizing

• and failure of approach1

Understand what went wrong- failure symptoms

Determine Root Cause of failures and mitigation approaches

Develop business scenarios with the PM 

• How he would like the process to work
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Questionnaire

Organization and process context

• Clashes between the agile process/organization/other processes

Product goals and vision

• Plans and fitness of practices

Product Context

• Architecture vs. coding vs. testing practices, skills and tools
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Root Cause Analysis – Typical 1

Symptom 

• Scrum teams are spending almost all of their time fixing defects, and new 
capability development is continuously slipping

Root Cause

• Initial focus was “far future/general” rather than “next delivery cycle/product specific”

– Plethora of variation parameters that interact detrimentally

– Time pressure to deliver became top priority

– Delivered an immature product

• There are 3 different cycles

– Customer Release (yearly, many variants);  IV&V Testing (quarterly, 4 
variants), and Developmental (monthly, 1 variant)
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Solution

Stabilize the Architecture

• Build an architecture for current products

– Rules, guidelines

– Over a few timeboxes

• Reduce the  # of “variant parameterizations”

• Make everyone play from the same sheet music

• Postpone adding new features

Re-plan the timeboxes

Re-visit the testing strategy/team assignments against variants
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Root Cause Analysis – Typical 2

Symptom

• Integration of products built by different scrum teams reveals 
incompatibility defects causing many failure conditions, leading to 
significant out-of-cycle rework 

Root Cause 

• Cross team coordination is poor, even though there are many 
coordination points and much time spent

• Different interpretations of interfaces by different teams

• Product owner on each scrum team are not seeing the big picture

• Mismatch between Architecture and scrum development
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Solution

Stabilize to remove failures

• Postpone adding new features

Identify and “collapse” common services across teams

Use Architectural Runway

• A system that has architectural runway contains existing or planned 
infrastructure sufficient to allow incorporation of current and near term 
anticipated requirements without excessive refactoring

• Architectural Runway is represented by Infrastructure initiatives that have the 
same level of importance as the larger scale requirements epics that drive the 
company’s vision forward
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Root Cause Analysis – Typical 3

Symptom

• Progress towards meeting milestones is unsatisfactory

Root Cause

• Mapping of capability features to software components per scrum cycle is 
disorganized

• Some new features are unused in each cycle- wasted effort

• Developer assignment to teams is inflexible
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Solution

Build more architectural planning views to align features between teams

Re-organize teams to better fit timebox workloads  
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Summary

Aligning agile methods with SoS engineering is complex and requires 
intricate decision making and planning

Re-planning timebox features is necessary

• NOT within timebox, but in-between

Questionnaire revealed many issues, which could be used to indentify 
root-causes and develop action items to recover program stability.
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